Water Efficiency Policy: A Technological High-Water Mark?

By Cecilia Tortajada, Tommy Kevin Lee 16 March, 2018

Lee & Tortajada on Singapore's water efficiency innovation

Singapore aims to produce 85% of its own water by 2060 & issued a USD23mn grant call for 3 project categories
These are: use less energy to produce water, optimise industrial water efficiency & use big data to manage water
Water authorities & businesses should be more proactive in developing efficiency tech & use them for water policies

This article was first published on Asia & The Pacific Society on 12 February 2018 and we have been kindly given permission to re-publish it. The original publication can be found here.


Earlier this month, the Public Utilities Board (PUB), Singapore’s national water agency, issued a grant call for three categories of projects worth a collective total of SGD30 million (USD22.6 million).The money will go to improving energy efficiency in water production, optimising water efficiency in industrial processes, and using data analytics in water resource management.

Singapore aims to produce 85% of its own water by 2060…
…the year before its water treaty with Malaysia ends

Singapore is well-known for seeking new methods of producing water and keeping it clean to sustain its overall development. Rainfall accounts for about 10% of water supply in the city-state, followed by recycled used water and desalination, which have capacities of up to 40% and 25% respectively.
The aim is to increase their capacities to 55% and 30%, for a total of 85% by 2060, the year before Singapore’s water treaty with Malaysia ends. At present, water imported from the Malaysian state of Johor can supply up to half the total demand.
As part of its water demand management policy, and in preparation for the expiry of its water agreement with Johor, PUB has further strengthened research and development on processes that will provide Singapore with more clean water.
These include biological processes; chemical and redox technologies; desalination and water reuse; sludge and brine management; automation and robotics; watershed management; water quality analytics and water distribution; groundwater and underground caverns; decentralised water treatment technologies; and industrial water technologies.
With the bulk of produced water coming from energy-intensive methods, PUB has been seeking to reduce the energy requirements of these processes.

The first request for proposal is on how to use less energy to produce water…
…there are two ways biomimicry can be applied here

Therefore, the first request for proposal is on how to use less energy to produce water. There is the idea to use techniques inspired by nature to produce water – this is known as biomimicry. For instance, mangrove plants and animal species living in saltwater can filter the salt to produce freshwater for themselves.
There are two ways biomimicry can be applied here. The first is to draw genetic material known as aquaporins from the specific plant and animal species and incorporate them into membranes. The second is to produce synthetic versions of these aquaporins that have similar properties and can, therefore, function the same way.
Another way to produce water more efficiently is from wastewater, using processes that do not require additional inputs of energy – net zero energy water production. The best example is the Marselisborg Wastewater Treatment Plant in Aarhus, Denmark. At present, it produces more than 150% of the electricity it needs for the plant. The surplus is used to pump drinking water to other parts of the city.

In cities, the most margin to save water is from buildings’ cooling towers

The second request for proposal is about water efficiency through process optimisation. In cities, especially those in the tropics like Singapore, the most margin to save water is from buildings’ cooling towers. In the city-state, these can easily take up more than 30% of the water consumption of a skyscraper and shopping malls. For industries, cooling needs can account for 25% of total water use.
After cooling towers, the largest potential for savings comes from industrial processes in the wafer fabrication, refineries and chemicals sectors. PUB is thus seeking a technological solution that can achieve a reduction of at least 300 cubic metres per day, or 5% savings of water consumption. Even though the documented best practices in Singapore can already achieve beyond these targets, the number of firms doing so are in the minority among the large water users. The intent here is to provide State assistance to encourage more companies to use water more efficiently.

The last project is on data analytics…
…the private sector is applying big data to optimise water use efficiency

The last project is on data analytics. At present, data analytics are used on a small scale for operational efficiency by leveraging on smart technologies. The objective is to use them on a larger scale.
In the private sector, a few analytics companies are working with utilities on applying big data to optimise water use efficiency. In Singapore, data analytics is also used to improve the organisational operations of PUB.

All three of these projects involve technologies that have originated and been applied elsewhere to varying degrees. Anammox, invented at the Delft University of Technology, is used in several water treatment plants in the Netherlands. Small-scale biomimicry demonstration projects exist, but so far not on a large scale. Achieving water efficiency in industrial processes is very common, and has been a policy in many cities in the US, Australia, and in Singapore. Our work currently focuses on building controls and the green building movement as part of water efficiency policies.
As technologies become more affordable and feasible, Singapore has made itself one of the first countries to incorporate the use of new research into its water demand management policy. The end objective: clean water that is produced with less energy and less environmental costs.

“The next generation in water policy efforts relies as much on management as on technology.”

The next generation in water policy efforts relies as much on management as on technology. With increasing water scarcity all over the world, more water authorities, as well as water businesses, would do well to play a more proactive role in the development of efficiency technologies and their use in the creation of water efficiency policies.


Further Reading

  • Two Sessions, Five Highlights For Water – An ‘ecological civilisation’ is now embedded in China’s constitution and ministerial reform has been tabled. Find out what these mean for water in our review of this year’s Two Sessions. Pay attention or risk being blindsided
  • Key Water Policies 2017 – 2018 – Missed out on key water and water-related policies in China this past year? Catch up with China Water Risk Woody Chan’s review, including the latest on the new Water Ten Law and environmental tax law
  • Is China Taking Over Global Leadership On The Environment? – Top experts, from the founder of TECONET to the Head of Asia-Pacific for Bloomberg New Energy Finance, share their thoughts at a high level panel in City University of Hong Kong. Their Sadhika Nanda reviews
  • China Steps Into Soft Power Vacuum – As the US retreats, Asit Biswas and Cecilia Tortajada explore how China is becoming the world’s leading soft power, from infrastructural development to research progress, and hurdles it faces ahead
  • Sustainable Finance – Hong Kong Is Ready! – Is Hong Kong ready to embrace sustainable finance? RS Group’s Leonie Kelly, Tze-wei Ng and Alicia Lui share findings from the Sustainable Finance Initiative’s first market-survey
  • Learning From Singapore’s Circular Water Economy – Hong Kong is facing an imminent water crisis yet Singapore’s novel circular water economy approach may offer solutions from which HK can learn. Utrecht University’s Julian Kirchherr & Circular Economy Academy’s Ralf van Santen explore
  • Hong Kong’s Pricey Water Deal With China – Much is made of the DongShen Agreement’s price tag but discussions need to move onto more complex issues such as the city’s rampant overuse & leakage. Hear from Civic Exchange on HK’s ‘illusion of plenty’
  • Water: Tale of Two Cities – Su Liu of the Civic Exchange discusses the different strategies adopted by Hong Kong & Singapore towards solving their water scarcity and how Hong Kong’s approach still leaves the territory vulnerable in the long term
  • Singapore: Future Ready in Water – EDB’s director of cleantech, Goh Chee Kiong, shares his views on SIWW, key technologies surfacing, new growth markets for industrial water and the role of government in innovation from R&D to piloting and eventually commercialisation
Cecilia Tortajada
Author: Cecilia Tortajada
Dr Tortajada is a leading international authority on urban water and wastewater management. She currently focuses on ensuring water future in terms of food, energy and environmental governance and ensuring water security through coordinated policies, which include water and natural resources management and water reuse. Dr Tortajada has advised major international institutions like FAO, UNDP, JICA, ADB, OECD, IDRC and GIZ, and has worked in numerous countries in Africa, Asia, North and South America plus Europe. She received the prestigious Crystal Drop Award and has been the only woman President of the International Water Resources Association during its 50 years of history. Dr Tortajada is currently a member of the OECD Initiative on Water Governance and juror for the Finnish Academy’s Euro One Million Millennium Technology Prize. She is also the Editor‐in‐Chief of the International Journal of Water Resources Development; Associate Editor of Water International; member of the Editorial Boards of the International Journal of Water Governance, Journal of Natural Resources Policy Research, and Urban, Planning and Transport Research Journal; as well as Editor of book series with Routledge, Springer and Oxford University Press. Cecilia has also authored and edited over 40 books by major international publishers. Her work has been translated into Arabic, Chinese, Farsi, French, German, Hindi, Japanese, Mongolian and Spanish.
Read more from Cecilia Tortajada →
Tommy Kevin Lee
Author: Tommy Kevin Lee
Tommy Kevin is a Research Assistant at the Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore. He majored in Sociology at Nanyang Technological University, where he was also Research Assistant. He has a previous background in the built environment sector, with work experience in the area of town management. In 2007, he successfully led a team to develop an anti-mosquito breeding device installable on roof drainage systems. The fully workable prototype won an award at Sembcorp Marine’s Green Wave, a nation-wide competition in environmental sustainability among the tertiary institutions, and was featured on Lianhe Zaobao (23 Jan 2008). At IWP, he is researching on water policies relating to urban drainage solutions, in particular, the use of Water Sensitive Urban Design in tropical cities, as well as their social use-values in sustainable real estate. He is also working on the social, historical and geopolitical contexts of water governance in Singapore.
Read more from Tommy Kevin Lee →